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Reported are the results of a study designed to
investigate and compare four cluster analytic procedures as potential
methods for the analysis of educational data. A secondary objective
was to determine whether or not there was some underlying
multidimensional structure to a set of mathematics achievement data.
The four clustering procedures (Pall and Hall's ISCDATA, Johnson's
HICLUS, Friedman and Rubin's iterative procedure, Singleton and
Kantz's iterative procedure) were comFared by applying them to a data
set from the National Longitudinal Study of Mathematical Abilities of
SMSG. The clustering variables were scales which described the
characteristics of thirty junior high schools and their communities.
the four clustering techniques produced very similar sets of
clusters, and from all indications three or four clusters seem
appropriate for clustering the mathematics achievement data. It was
found that the students' mathematics achievement across clusters was
not the same after adjustments were made for differences in aptitude
and initial understanding of mathematical concepts. It was concluded
that the differences in achievement were due at least in part to the
effect of the particular school on the student. (Author/RS)
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INTRODUCTION

Educational researchers are often confronted with the problem of attempting to
arrange objects (individuals, tests, test items, etc.) into groups by utilizing a
set of measurements observed on the objects. The researcher attempts to determine
a natural grouping of the data using a small number of clusters.

The method called cluster analysis takes a set of heterogeneous data and
subdivides it into smaller more homogeneous groups called clusters. The purpose is
to form groups of similar objects. In testing a hypothesis, the heterogeneity of
the data may not permit us to detect any differences. However, by combining into
homogeneous units we can detect differences more easily.

An overall description of the clusters may be obtained by listing the objects
in each of the clusters or by using the center of gravity (mean) of each cluster.
Hopefully, this description could be reproduced if another sample of the same size
-sere to be chosen from the same population.

CLUSTERING TECHNIQUES

Suppose we have p variates, each observed on N objects (or indiviu'uels). We
may write x the jth observation for the ith object. The data may be represented
as a point id a p dimensional space as

x (x x
ip

)
'

1,. ., N.

The point x represents the p measurements or obrervaticns made on the ith object
or individuil. These observations made on the N objects may be summarized in a
matrix of observations, X, of order N x p. If we let T denote the matrix of sums
of ,squares and cross-products of deviations about the mean, then

T =, (X - 11) ' (X - M) ...; (xi - N) ' (xi - N)
isl

where M is the matrix of means. Since the total sum of squares and crose-products
may always be written as the sum of two terms: The sum .1 squares and cross-
products within clusters, W, and the sum of squares and cross - products between
clusters, B, we have that

T B W.

The between-cluster scatter matrix, B, reflects the inter-group differences,
and can be used to measure the contribution made to these differences as a result
of applying the different treatments to the G groups. Since objects in the same
cluster will vary only in accordance with individual or chance differences and not
as to treatment applied, the within-cluster scatter matrix, W, reflects intragroup
differences.

A good clustering procedure for organizing data will produce clusters such
that objects within clusters are more homogeneous than objects between clusters.
That is, partitioning of the data into clusters is done in such a way that there
is minimum variation within clusters. This may be sccomplished by minimizing the
matrix W, which by necessity then vaximizes the matrix B. This is because the
sum of W and B is constant, and is independent of the partitioning of the data
points.



-2-

In each of the clustering techniques compared, the N objects are partitioned
into a predetermined number of clusters, say G. Their common goal is the minimization
of the amount of variation within the clusters, while at the same time producing a
fixed number of clusters. Hence, either directly or indirectly the methods are
designed to minimize a function of W and/or B. It is important to note that although
all methods attempt to find an absolute minimum (or maximum) for the chosen criterion,
the algorithm generally stops as soon as a local minimum (or maximum) is obtained.
This means that two algorithms using the same criterion may yield different result,;
when there are several extrema points.

;.1.1 of the techniques used to cluster a group of objects are dependent upon
four basic steps. (1) Selection of variables (measurements or observations) used
to describe each of the objects, and the scaling of these variables. (2) Proper
choice of a proximity parameter which will he used to measure the similarity between
pairs of objects to be clustered. (3) Selection of a criterion function (algebraic
function) to measure the "goodness" of the clustering technique. (4) Interpretation
of the clusters formed by the technique.

The methods of cluster analysis compared in this study are: Ball and Hall's
ISODATA (1965), a hierarchical clustering procedure (HICLUS) described by Johnson
(1967), and two other iterative procedures, Friedman and Rubins' prccedure (1967),
and Singleton and Kautzs' procedure (1965). In each of the methods, the variation
within the clusters is minimized in accordance with some criterion.

Singleton and Kautz (1965) devise a clustering algorithm which minimizes the
sum of the squared deviations from the cluster means of the pooled within-groups
scatter matrix, W. This function called the "Trace W" criterion partitions the data
directly into G groups using a hill-climbing proc..su.

Ball and Hall (1965) develoi. a clustering procedure called ISODATA, an acronym
for Iterative Self-Organizing Data Analysis. This procedure summarizes a large data
set by choosing a smaller set of cluster means called "centers" that tend to minimize
the sum of squared distances of each data point from its nearest center. The
process implicitly minimizes the Trace W function.

Friedman and Rubin (1967a, 19675) develop a clustering procedure to find the
"best" partition of N objects into a given number of groups, G, using a hill-climbing
process. Here best partition is defined as the partition which maximizes a chosen
criterion function. Friedlian and Rubin discuss and use three criteria for clustering:
Negative Trace W, Trace W B, and det(B+W)/det(W).

Johnson (1967) describes a procedure for grouping objects in a manner that
establishes a taxonomy of nonoverlapping clusters called hierarchical groups, where
each larger unit is the union of the next subordinate units. The process begins by
placing the N objects into N clusters and continues until all N objects are placed
into one cluster. These groups of clusters are formed by using one of two criteria.
One criterion forms clusters so that variation within each cluster is minimally
increased at each stage of clustering. That is, its' goal is the formation of
clusters that are optimally compact. The second criterion attempts to form clusters
that are optimally connected. It should be noted that the restriction that the
clustering be strictly hierarchical may have the consequence that some level of the
clustering may not be truly optimal.

:3
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All of the above procedures have as an objective the analysis of multivariate
heterogeneous data by partitioning the data set into smaller more homogeneous groups.
As a result of the clustering, the groups should lend more insight into the
structure of the data. These clustering procedures could then be applied to any
discipline where the researcher has gathered N objects to study and has described
each object by taking a set of cne or more measurements on each of the N Objects.

Formal statistical theory has not been developed for clustering procedures, so
that traditional sampling theory and tests of hypothesis are unavailable. However,
in this study once the clusters have been determined, formal statistical analysis is
used to determine the extent to which the various groups differ in terms of their
students' mathematics achievement.

MATHEMATICS ACHIEVEMENT DATA SETS

The data sets analyzed were collected by the National Longituainal Study of
Mathematical Abilities (1:!IIMA) of the School Mathematics Study Group (SMSG). This
study focuses attention on thirty junior high schools from a population of 197
junior high schools. These schools remained in the NLSMA study for the entire
period of five years. There were 2995 students tested in the thirty schools.

The sets of measurements taken on each school are divided into two main groups:
Student-test variables which consist of mathematical and psychological scales, and
a set of non-test variables which are grouped into two classifications-- school-
community and teacher. The school-community scales provide information about the
individual school and the community served by the school. The teacher scales
include information on the teachers' educational background and questions designed
to measure the teachers' attitude toward teaching mathematics.

One of the goals of the analysis of the clusters is to identify some of the
variables associated with the development of mathematical abilities. By grouping
the school into smaller more homogeneous clusters, we hope to reach our goal by
comparing the students' mathematics achievement across these clusters which have
been made as dissimilar as possible.

CLUSTERING RESULTS

Clustering of the schools is done on the school means obtained using twelve
school-community variables: Average daily attendance, residential description,
parents' yearly income, teachers' starting salary, tuachers salary index,
innovations, mathematics supervisor, heavy use of SMIG, heavy use of other
experimental mathematics programs, inservice training of teachers, mathematics class
size, and other academic class size. The teacher scales are not used to cluster
the schools but are used for descriptive purposes only. Seventeen teacher scales
are used.

Principal Component Analysis

A principal component analysis is performed to interpret the data in fewer
than twelve dimensions, in terms of the school-community variable description.
The first five principal components accounted for 72 per cent of the total variance.
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Each of the five factors is bipolar. The first factor is called "School
Characteristics". The largest positive loadings are on variables- mathematics class
size, academic class size, inservice training, and heavy use of experimental
mathematics; parents' median yearly income has a large negative loading. This;

result is consistent with the factor interpretation inasmuch as low income is often
associate with large class size. In a similar manner the other four factors were
named "District Professional Expenditures", "Family Socioeconomic Status",
"Innovations", and "SHSG Usage", respectively.

Number of Clusters

Three clusters are extracted using the Friedman-Rabin, Singleton-Kautz, and
Johnson procedures; and four clusters are extracted using the Ball-Hall procedure.
Johnsons' set of three clusters is very similar to Ball-Halls' set of four clusters;
infect, they differ only in the placement of two schools. The sets of three clusters
obtained under the Friedman-Rubin and Singleton-Kautz procedures using the Trace U
criterion are almost identical. The only exception is the placement of one school.
(The Singleton-Kautz and Friedman-Rubl- procedures give identical results for four
clusters.) Over all four procedures, only five schools vary in their cluster
po3ition.

Interpretation of the Clusters

The problem of deciding which is the best clustering is not well defined.
Hence, the best grouping must be based on what the investigator purposes to do with
the clusters. The set of clusters obtained using Johnsons' hierarchical procedure
is used for further interpretation and statistical analysis. However, the other
clustering procedures are suitable for analysis and produce similar results.

The three Johnson clusters are termed "lower average", 'everage", and "upper
average", in terms of the school-community characteristics. For example, the lower
average cluster is characterized by the following: Low average daily attendance,
large class size, less use of innovative methods, low-cost residential, areas,
parents receiving the lowest yearly income, teachers receiving the lowest salaries,
and over seventy-five per cent of the teachers are involved in inservice training.
The teachers serving the lower average cluster as compared to those in the other
two clusters have had less teaching experience; and none of these teachers holds an
advanced degree. All of the teachers have a strong theoretical orientation; and
they ere also more involved in teaching than those in the other two clusters. The
greatest percentage of female teachers is concentrated in this cluster.

THE STUDENTS' MATHEMATICS ACHIEVEIIENI. RESULTS

Several statistical analyses are performed in the analysis of the clusters
using nine student test scales: Lorge-Thorndike Verbal, Lorge-Thorndike Nonverbal,
Rationals-Computation, Rationals-Honcomputation, Whole Numbers, Geometry, Numbers-
Whole, Algebra-Sentences, and Conversion. The first six variables termed covariates
were administered during the fall of the first year of testing. The last three
variables are used as variates and were administered during the spring of the third
year of testing. The variates are used to measure the change in the students'
mathematics achievement over the three-year period.
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Canonical Correlation Analysis

The covariates are used to measure (or predict) the change in the variates;
hence, we should first determine ii the differences among the vatiate means can
actually be explained by the differences in the covariates. If this is the case
then the two sets of variables are dependent and analysis of covariance methods may
be used to remove the effects of variations in the coverlet-es, insofar as these
effects are measured by linear regression. It is important to note that the
covariate scales need not be direct causal agents of the variates but may for
example, merely reflect characteristics of the environment that also influences the
variate scales.

In order to determine the dependence between the two sets of student test
scales canonical correlation analysis is used to determine the correlation between
the two sets of variables. The Chi-square test of significance developed to test
the hypothesis that the p covariates are unrelated to the q variates is used in this
study. All three of the correlations are significant at the .02 level. Hence, the
domains are significantly related. The major variate is Numbers-Whole and the major
covariates are Lorge-Thorndike Verbal and Lorge-Thorndike Nonverbal.

Multivariate Analysis of Covariance

We attempt to understand the nature of the clusters by looking at differences
between the groups not only on measures of school-community and teacher
characteristics; but also in terms of the students' mathematics achievement.
Significant cluster differences are a reflection that the schools are not equally
effective across clusters as measured by the students' mathematics achievement,
after adjustments are made for competencies of the students. Whereas, nonsignificant
differences are a reflection that the schools' characteristics do not influence the
achievement level of the students.

The multivariate analysis of covariance results produced an F value of 9.14
using 6 and 5,986 degrees of freedom. Hence, the hypothesis of equality of treat-
ment means following covariance adjuatment is rejected at the .01 significance level.
The means and standard deviations for the three clusters are presented in Table 1.
The ?!esults of the univariate tests (Table 2) reveal that the most significant
variate is Conversion followed by Algebra-Sentences. Numbers-Who'a did not
discriminate between the groups.

The "lower average" group produces the lowest student achievers as evidenced
by the adjusted mean performances of the students on scales Numbers-Whole and
Algebra-Sentences. The "average" group produces the lowest achievers on Conversion;
and the "upper average" group produces the highest achievers on both Algebra-
Sentences and Conversion. (See Table 3).

Hence, the mathematics achievement of the students across the clusters cannot
be considered the same after adjustments have been made for differences in aptitude
and initial understanding of mathematical concepts. Therefore, w^ conclude that
the schools may not be considered equally effective. The observe! differences
between the adjusted means cannot be explained by the competencies of the students;
but must be attributed at least in part to the effect of the school to which the
student is assigned.
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TABLE 2

F-VALUES FOR DIFFERENCES BETUEEN CLUSTERS
ON EACH VARIATE

F
2

2986

Y
1

: Numbers-mholc 0.86 .42

Y2: Algebra-sentences 4.07 .02

Y
3

: Conversion 20.43 .01

TABLE 3

THE ADJUSTED 1MANS FOR THE THREE VARIATES

Cluster I Cluster II Cluster III

Y
1
--numbers--7hole 4.13 4.32 4.30

Y
2
--algebra-sentences 2.45 2.81 2.84

Y
3
--conversion 6.04 5.53 6.20
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